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Abstract

A linear flux approach is developed for a finite
element thermal-structural analysis of steady-state
thermal and structural problems. The element fluxes are
assumed to vary linearly in the same form as the
element unknown variables, and the finite element
matrices are evaluated In closed form. Since numerical
integration is avoided, significant computational time
saving Is achieved. Solution accuracy and compu-
tational speed Improvements are demonstrated by
solving several two- and three-dimensional thermal-
structural examples.

Nomenclature

A finite element area

{B} boundary load vector

Cij material elastic constants

[Dx]. Dy} element matrices, Eq. (6)

, x and y flux components

h convective heat transfer coeff., Eq. (16);
beam thickness, Eq. (30)

H internal heat generation

{J] Jacoblan matrix

k thermal conductivity

1 beam length, Eq. (30)

i, mn components of unit normal vector

M] mass matrix

element intarpolation function

[N]
[Px]. [Py] element maltrices, Eq. (11)

q heat flux

{R} load vector

s distance along boundary

T temperature

Tr fluld recovery temperature

Ts surface temperature

To reference temperature for zero stress
Teo surrounding medium temperature
AT temperature increment

u,v,w displacement components

Vi element constants , Egs. (21)-(28)
XY, 2 coordinate directions

o coefficient of thermal expansion
Ox, Oy, Txy  Stress components

y Stefan-Boltzmann constant
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€ strain components, Eq. (15);
emissivity, Eq. (16)

Subscripts

T thermal

s structural

Superscripts

T transpose

Introduction

For hypersonic vehicles to become a practical
reality, efficient techniques are needed to analyze light
weight airframe and engine structures for repeated and
prolonged exposure to their severe flight environment.
To understand the structural response under these
severe aerodynamic loads, research in the Aerothermal
Loads Branch, NASA Langley Research Center has
focused on developing effective computational
approaches for predicting the aerodynamic flow and the
thermal and structural response of the structure,
including their interactions!. The approaches consist of
using: (1) a general automated unstructured gridding to
discretize the aerodynamic flow fisld and the structure,
(2) finite element methods to solve for the environment,
loads, and response for all three disciplines (flow,
thermal and structural response), and (3) adaptive mesh
refinement techniques with error indicators to minimize
the number of grid points and Increase the solution
accuracy.

A Taylor-Galerkin finite element algorithm, has
been used recently to predict the aerodynamic flow field
as well as the thermal-structural response for high
speed flow over leading edges2. The approach utilizes:
(1) a Taylor series expansion in time to establish
recurrence relations for time marching, and (2) the
method of weighted residuals with Galerkin's criterion
for spatial discretization. The governing equations are
cast in conservation form. The standard primitive
variables are replaced with their flux counterparts, which
are assumed to vary linearly over the elements. This
formulation allows the finite element matrices to be
evaluated In closed form, thereby avoiding the more
expensive numerical integration. Since the Taylor-
Galerkin algorithm is a time marching (transient)
algorithm, the full benefits of the linear flux formulation
for steady-state problems (steady-state heat transfer and
static structural problems) has not been exploited.
Furthermore, most structural problems may be treated as
quasi static even when the aerodynamic loads and the
thermal response are transient.

The purpose of this paper is to extend the Taylor-
Galerkin algorithm to steady-state thermal-structural
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analysis. The linear flux formulation and solution
procedure are introduced. The finite element matrices
(in Integral forms) which are different from those
appearing in the conventional finite element formulation,
are presented. A method to derive these finite element
matrices in closed form Iis developed and presented for
both two- and three-dimensional elements.

The capability of the linear flux formulation is
demonstrated using four examples: (1) a thermal
analysis of a circular plate with internal heat generation,
(2) a structural analysis of a beam-bending due to
thermal load, (3) a thermal-structural analysis of a two-
dimensional aerodynamically heated leading edge
model, and (4) a structural analysis of a three-
dimensional leading edge model. Results are
compared with available analytical solutions and the
conventional finite element solutions.

Thermal-Structural Formulation

The derivation of finite element equations using a
linear flux formulation is presented for steady-state
thermal and structural analyses. For simplicity, the
derivation presented herein is for two-dimensional
problems. Extension to three-dimensional problems is
straightforward. The governing equations are written in
conservation form so that the linear flux formulation can
be used directly. This formulation yields finite element
matrices which can be evaluated in closed form. A
method to evaluate these closed form matrices is
described for both two- and three-dimensional elements.

Governing Equations
Heat Transfer. The steady-state thermal response of

a structure is governed by the energy equation in
conservation form,

L)+ (F) = H (1)

where the subscript T denotes the thermal analysis, Et
and Fy are the heat flux components, and Hy is the heat
source per unit volume. The heat fluxes Ey and Fy are
related to temperature gradients by Fourier's law.

Structural Response. The static structural response

is governed by the equilibrium equations in
conservation form,

2 (E)+ 5 {F) =0 @

where the subscript s denotes the structural analysis.
The vectors {Es} and {Fs}, which contain the stress
components, are given by

€ = lo
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The stress components ox, ?, and txy are related
t

to the displacement gradients and the temperature by
the generalized Hooke's law.

Solution Procedure

For simplicity in presenting the linear flux
algorithm, both the steady-state energy equation and
structural equilibrium equations are written in the form of
a scalar equation as,

E , F

> tay - @
Even though the derivation presented below is for the
thermal analysis, the procedure can be applied directly
to the structural analysis.

Linear Flux Assumptions. The key feature of the linear
flux formulation in the thermal analysis is to assume the
distribution of the element heat fluxes E and F in the
same form as the element temperature distribution T,
that is
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[N(x,y)I{T}
[N(x,y){E} (5)
[N(xy)]{F}

<K< <

where [N(x,y)] are the element interpolation functions,
and {T}, {E} and {F} are the vectors of the element nodal
quantities. The assumption of a linear distribution of
element fluxes E and F which are interpolated In the
same form as other dependent variables (e.g. T, as
shown in Eq. (5)), is widely used in the computational

fluid dynamics2.

Finite Element Equations. The finite element equations
are derived using the method of weighted residuals3.
The governing differential equation, Eq. (4), is multiplied
by the weighting functions, [N(x,y)], and integrated over
the element area A. Integration by parts is performed to
produce element integral terms and the boundary
surface integral terms for application of different types of
thermal boundary conditions. Details of the derivation
follows the conventional finite element approach
described In Ref. 3. The finite element equations
obtained are in the form,

[DxJ{E} + [Dy]{F} + {R} + {B} = 0 (6)

In this equation, the matrices {Dx] and [Dy] are
(0] = [ (5 INIdA (72)
A

(0,1 = [ (511 (N1 dA (70)
A

The element nodal vector, {R}, associated with the heat
source, H, is defined as

(R}= [{N}H dA (8)
7 A

The vector {B} representing the boundary nodal vector is
defined as



(B) = [IN}INI ds (t{E) +m{F})

= [N s (a) ()

where | and m are the components of a unit vector
normal to the element boundary. The finite element
matrices shown In Egs. (7)-(9) are evaluated in closed
form as will be demonstrated In the subsequent section.
Since the fluxes, E and F, are related to the
temperature gradients glven by Fourler's law,

E = - aT (10a)
k ox
e o7

F = k 3 (10b)

where k is the materia! thermal conductivity, the element
nodal flux vectors, {E} and {F}, can be expressed in
terms of element nodal temperature, {T}, as

{E} = -k [Px] {T}
{F} = - kK [Py}l {T}

where the matrices, [Px] and [Py], are related to the
element shape and are given in the Appendix. The
element nodal flux vectors, Egs. (11a) and (11b), are
substituted into Eq. (6) to obtain the final finite element
equations in terms of the unknown element nodal
temperature, {T}, in the form,

[K){T} = {R} + {B)

where the stiffness (or conduction) matrix, [K], is given by
[K] =k [Dx] [Px] + k[Dy] [Pyl (13)
Equation (12) is in a form similar to that obtained from

the conventional finite element approach except that the
latter stiffness matrix is defined by

(11a)
(11b)

(12)

(K] =k (By o
A

jk {%H%%Jdt\ (14)
A

Evaluation of the conventional stiffness matrix, [K], for
some element types, such as the two-dimensional
quadrilateral and three-dimensional hexahedral
elements, requires the use of numerical integration.

For nonlinear problems (e.g. due to temperature
dependent thermal conductivity), Ea. (12) is solved by
the Newton-Raphson iteration technlque3-4. This
procedure Is identical to that used in the conventional
finite element approach.

The approach presented for the thermal analysis
is applied directly to derive the finite element equations
for the structural analysis. The equations are identical to
Eqs. (5)-(13), where the temperature vector, (T}, Is
replaced by the displacement vector containing the
components u and v in x- and y-directions, and the
vectors {E} and {F} represent the element nodal stress
components. For elastic orthotropic materials, typical

3

nodal stress components In two dimensions are
obtained using the constitutive relations,
CyE + B (T-To) ij=1,23

o = (15)

where ¢] are the nodal strain components, and To is
the reference temperature for zero thermal stress. The
material elastic constants, cjj, and the thermal expansion

parameter, Bj, may be temperature dependent.

Boundary Conditions. The boundary conditions for
thermal analysis are applied via the boundary nodal
vector {B} shown in Eq. (9). The vector {q} appearing in
this equation may be replaced by different types of
boundary conditions,

~

0 (insulated)
Qe (specified heating)
q = { (16)
hT,-T) (surface convection)
4 _4 -
L eo(T,-T.) (surface radiation)

The boundary conditions for the structural
analysis, such as the applied surface pressure, can be
added into the structural equations via the surface
boundary vector. The procedure is identical to that for
the thermal analysis previously described and lis
therefore omitted.

Derivation of Closed Form Finite Element
Matrices and Element Nodal Gradients

Al finite element integrals, such as [Dx], {Dy], and
{R}, which are given by Egs. (7) and (8), can be
expressed In‘closed forms. This is true for simple
element types (rods, triangles and tetrahedrons) as well
as for more popular elements (quadrilaterals and
hexahedrons). In addition, closed form expressions for
other finite element integrals (such as the consistent
mass matrix) and the gradients of element variables
(such as 9T/ax) which are normally required in other
finite element formulations can be obtained by the
procedure described below.

Quadrliateral Element

Typical finite element integrals for a general
quadrilateral element, as shown in Fig. 1, are given
below using natural coordinates

M) = [INTTINT1J1 & am (17

O.1 = [- [ (21 INT 191 ¢& dn (18)

UV SN SN

where [M] is the consistent mass matrix and [Dy] Is the
element matrix previously defined in Eq. (7a). The
determinant of the Jacobian |J| represents the
transformation from the element global x-y coordinates



to the natural coordinates &-m (see Fig. 1). The
transformation permits the element integration to be
evaluated over a square. The determinant of the
Jacobian for the two-dimensional quadrilateral element
is

Ji Jiz
g1 =
Ja1 Jo
9 4 0 4
a—g‘i’:‘(N.X,) EEIE(le')
2 E(Nx) & 5Ny
2 2 4
- FACEARE - ALY
0 4 0 4
E|§1(Niyl)' 3;]“23(le|) (19)
where

N =N (B m)=F (14 8E)(1+nn) i=tid (20)

The algebraic expression for the determinant of
the Jacobian shown in Eq. (19) is in the form of the
partial derivatives of the element interpolation functions
Ni(E.n) and the element nodal locations (xi, yi; | = 1,...,4).
The expression for the determinant of the Jacobian Is
quite lengthy (contains a total of 64 terms it fully
expanded), and thus results in a tedious task for deriving
the closed form element matrices (Eq. (17) and (18)).
Such a task becomes almost impossible for the three-
dimensional 8-node hexahedral element in which the
determinant of the Jacobian, if fully expanded, contains
approximately 200,000 terms. To overcome this
difficulty, the determinant of the Jacobian is rewritten In
an alternate simpler form,

1 = 2R (&)Y, (21)

where Nj(E.m) are the functions of the natural
coordinates & and 1, and are selected so that Eq. (21)

represents the complete order of polynomials of § and
n as appearing In the original Eq. (19). The unknown
constants, Vi, are functions of the nodal coordinates and
are to be determined. For a two-dimensional
quadrilateral element, the functions, Ni(&.n), can be
represented by the isoparametric quadrilateral element
interpolation functions, Ni(§.n), as given by Eq. (20).
Equation (21) then becomes

11

4
Z N (&)Y,

NV, + NpVp + NaVy + NoV, o (22)

The unknowns, Vi, i=1,...,4, can then be determined

easily using the properties of Nj(§.n), that is Ni(§.m)
equal to unity at node i and zero at the other nodes. As

an example, V1 is obtained by equating Egs. (22) and
(19) with the property at node 1 (§=n=-1in Fig. 1) to give

Vy = [(xa-X{)¥q + (xq-xa)y2 + (x4-Xx2)y1}4 (23)

The use of the determinant of the Jacobian in the
form of Eq. (21) instead of the original Eq. (19) permits
the finite element matrices, (Eq. (17) and (18)), to be
gvaluated in closed forms. The use of the symbolic
manipulation program MACSYMAS greatly simplified
this evaluation,

The determinant of the Jacobian in the form of Eq.
(21) Is also used to derive closed form expressions for
the element gradients. For example, the element
temperature gradient, 9T/dx, Is given by

oN N
%=T1]|(J22l9§ J . Jazlaﬂ J) {T} (24)

where Ji12 and J22 are defined in Eq. (19). The
temperature gradient at node 1 can be determined by

setting £=n=-1 to yield
T } (TZ-T1) y, + ( T‘- T4 ) y,+ (TA-TZ) Y,
Ox Inodet = (x,1x, )y, + (X, X, )Y, + (X, X,)Y,

(25)

where subscripts denote the element node numbers
shown in Fig. 1.

The approach presented here is used to derive
closed form expressions for the other finite element
matrices (eg. [Dyl, and {R}) and nodal variable gradients.
These closed form expressions are used In the
formulation for both thermal and structural analyses.

Hexahedral Element

The three-dimensional finite element matrices are
in the same form as shown in Egs. (17) and (18), except
that integration is performed over the element volume.

For an 8-node hexahedral element as shown in Fig. 2,
the element interpolation functions are,

N,= N, (En.0) = 3 (1488) (1+nn) (1425) 1=1,..8 (26)

and the determinant of the Jacobian is given by,

Eaé (ZN,x) -a% (EN,y) 5% (EN,2)
9 9 9.

) - 2eNx  SeNy el
3 N %) ZENy) Nz

By following the procedure described In the
previous section, the above determinant of the Jacobian
is rewritten in an- alternate simpler form as in Eq. (21). In
three dimensions, the hexahedral element interpolation

functions, Ni(&,n.%), given in Eq. (26), can not be used to

represent the function, Ni(£,n,0), in the same fashion as
in the two-dimensional Jacobian formulation. This is
because the hexahedral element interpolation functions,



Nj(&,n.{), do not provide a complete polynomial as
required by the determinant of the Jacoblan shown In

Eq. (27). Therefore the functions, Ni(&,n.L), are
represented by 27-node Langrange cubic element
interpolation functions to obtain a simpler form for the
Jacobian determinant, given as Eq. (28)

1] =E€1Nl(g,n,§) V, 1,27 (28)

The unknowns Vj are determined by equating the Egs.
(27) and (28) at the nodal locations of the Lagrange
cubic element. The program MACSYMAS was used to
derive these unknowns, Vi, as well as the associated
element matrices and the element nodal gradients in
closed form. The algebraic expressions for the matrices
and the gradients were very lengthy therefore they were
translated into FORTRAN statements using MACSYMA
and were used directly in the analysis code. The use of
these closed form expressions reduces the
computational time compared to the traditional
numerical integration, as will be demonstrated in the
next section.

Application

Four examples are presented to demonstrate the
accuracy and computational efficiency of the linear flux
formulation. These consist of: (1) a thermal analysis of a
circular plate with internal heat generation, (2) a
structural analysis of a beam bending due to thermal
load, (3) a two-dimensional thermal-structural analysis
of an aerodynamically heated leading edge modsl, and
(4) a three-dimensional structural analysis of an
aerodynamicaily heated leading edge model. Results
obtained by the linear flux formulation are compared
with available analytical solutions and the conventional
finite element solutions.

Circular Plate With Internal Heat Generation

A 20 in. diameter stainless steel circular plate with
internal heat generation and specified zero temparature
along the circumferential boundary shown in Fig. 3 is
used as the first example. Analytical solution for the
variation of temperature in the plate is available and is
given by

T(r) =4°—k(1oo-r"’) (29)

where Q is uniformly distributed internal heat generation
'rate per unit volume, k the plate thermal conductivity and
r the plate radial distance. Due to symmetry, only a
quarter of the plate is modeled with 10 quadrilateral
elements as shown in Fig. 3. The distorted quadrilateral
element shape was selected to evaluate the formulation
performance under an arbitrary unstructured mesh
condition.

The plate temperature distribution obtained from
the linear flux formulation is compared -with the
analytical solution (Eq. (29)) and the conventional finite
element solution In Fig. 4. Because of the crude mesh
used in the model, both finite element solutions
underpredict the temperature distribution. The tempe-
ratures at nodes A, B, and C (see Fig. 3), obtained by the

analytical method, linear flux approach, and the
conventional approach are shown in Table 1. These
results Indicate that the linear flux formulation provides
slightly higher solution accuracy compared to the
conventional finite element formulation. This Is due to
the fact that four Gauss point numerical integration,
which Is commonly used to evaluate the conventional
finite element stiffness matrix, (see Eq. (14)), can not
provide exact integration for arbitrary quadrilateral
element shapes.

Table 1 Comparative nodal temperature (9F)
and errors

Location Analytical  Linear flux Conventional

Eq.(29) Temp. Error Temp. . Error

% %
A 100.0 96.9 3.1 96.5 3.5
B 92.0 88.3 4.0 87.9 4.4
(] 68.0 67.8 0.3 67.3 1.0

The computational time for linear flux approach
and the conventional approach are given in Table 2.
The comparison of the computational time indicates a
39% savings for the linear flux approach. The time
savings Is due to the use of the closed form algebraic
expressions rather than the numerical integration to
evaluate the finite element stiffness matrix.

Table 2 Comparative CPU time (CRAY-2

seconds) for evaluating element

stiffness matrix
Linear flux Conventional % Saving
0.1036 x 10 -3 0.1690 x 10 -3 39

Beam Bending Due to Thermal Load

As a second example, a 4 in. long, 0.1 In. thick
stainless steel beam pinned on the bottom edges Is
considered and Is shown in Fig. 5. The beam Is
assumed to be flat, and stress free at room temperature.
The beam temperature Is raised uniformly by 65°F. The
edge constraints cause the beam to bend into a convex
shape. At this relatively low temperature and small
deformation, beam structural response may be
approximated by the beam-column theorys, in which
shear effects are neglected. For cylindrical bending,
flexural rigidity of the beam, D, Is equal to Eh3/12, where
E Is the modulus of efasticity and h Is the thickness of the
beam (see Fig. 5). The deflection, v(x), is glven by7

_h ,coshx |
vi= g ()
2

(30)

where ! Is length of the beam and A is v (P/D). The axial
constraint force, P, is computed from



2
Pl B an (2
hE+2Man(2)+
. (L_slnxl)
h P2 2h_ =
8 D cos2M aATL 0 (31)
2

where AT is the beam temperature increment.

Using symmetry, one-half of the beam is modeled
with 160 quadrilateral finite elements. The finite
elements are uniformly distributed with 40 elements
along the beam length and 4 elements through the
beam thickness. Both the linear flux and the
conventional finite element approaches yleld identical
beam deflections. The predicted deflection distribution
is compared with the solution from the beam theory, (Eq.
(30)), In Fig. 6. The figure shows a very good agreement
of the beam deflection distributions with the maximum
ditference of about 2% at the beam center (x=0).

The predicted beam deflection obtained from the
linear flux formulation demonstrates the capability of the
approach for providing the same solution accuracy as
the conventional finite element approach for the
structural analysls. Of course, the computational time
saving of 39% ls still achieved in the evaluation of the
finite element stiffness matrix.

Two-Dimenslonal Leading Edge Model

To further demonstrate the capability of the linear
flux formulation for both thermal and structural analyses,
the approach Is applied to predict the thermal-structural
response of an aerodynamically heated leading edge
subjected to a high speed flow. The leading edge
consists of a 0.25 In. nose diameter, 3 in. long mode!
made of 0.1 in. thick Inconel 617 alloy as shown In Fig.
7. The thermal boundary conditions along the outer
surface consist of applied aerodynamic heating and
emitted surface radiation. The leading edge is insulated
along the inner surface. A schematic of the finite
element model, which consisted of 508 quadrilateral
elements Is given in the figure. The mesh is graded with
five elements through the thickness and 127 elements
along the circumference. Approximately 70% of the
elements lie in the 0.25 in. nose of the leading edge.

The aerodynamic heating along the leading edge
outer surface and the aerodynamic flow field
represented by the Mach number contours are shown in
Fig. 8. Thesse flow solutions were obtained from Ref. 8
by solving the Navier-Stokes equations. The Mach
number contours Indicate an unsymmetric bow shock
shape from the free stream Mach 5.25 flow, which Is
inclined 12.5° relative to the bottom of the leading edge.
The aerodynamic heating rate distribution is relatively
low along both lower and upper surfaces of the leading
edge compared to the stagnation point heating rate.
The aerodynamic heating rate on the lower surface is
slightly higher than the upper surface. The asrodynamic
heating increases significantly at the nose because the
flow stagnates in that region.

The leading edge aerodynamic heating, shown in
the Fig. 8, was predicted assuming a uniform surface
temperature of 530°R. During the transient response,
the aerodynamic heating rate decreases as the leading
edge temperature increases. Thus, to obtain a realistic
leading edge temperature response, the specified

6

aerodynamic heating (qs in Eq. (16)) is converted into
the surface convection boundary condition (h(Ts-Tr) in
Eq. (16)). It should also be noted that the change in the
surface convection coefficient, h, with the surface
temperature, Ts, is small compared to the change In the
heating rate, gs.

The predicted steady-state leading edge
temperature contours and the outer surface temperature
distribution are compared with the conventional finite
element solutions in Fig. 9. The temperature
distributions obtained from both approaches are almost
identical with the maximum difference of 0.2% at the
nose of the leading edge where the peak temperature
occurs.

The aerodynamic pressure on the leading edge
and the flow pressure contours8 are shown in Fig 10.
The peak pressure occurs at the flow stagnation point on
the nose and the pressure is nearly uniform on the top
and bottom surfaces. This aerodynamic pressure (Fig.
10) and the leading edge temperature (Fig. 9) are used
as the aerothermal loads for prediction of the leading
edge structural response. The leading edge material
properties, such as the modulus of elasticity and the
coefficient of thermal expansion, are temperature

dependentg. The finite element discretization previously
used In the thermal analysis is also used for the
structural analysis to eliminate the data manipulation
normally required by the different analysis disciplines.
The predicted tangential stress contours superimposed
on the deformed leading edge are shown in Fig. 11.
The Increased leading edge temperature causes the
leading edge to expand. The temperature ditference
between the lower and upper sections (higher
temperature on the lower section) causes the leading
edge to bend and rotate upward. The figure shows that
the tangential stress, which is primarily caused by the
temperature difference between the two sections, is
relatively low. These results are in excellent agreement
with the conventional finite element results indicating the
validity of the' linear flux formulation for the structural
analysis. Again, a 39% computational time saving is
achieved using the linear flux approach.

The predicted structural response obtained from
the two-dimensional leading edge model is based on a
plane strain assumption. The use of this assumption

results in high compressive axial stresses (=150 ksi) in
the direction normal to leading edge cross-section. A
three-dimensional analysis with the appropriate
boundary conditions would provide a more realistic
leading edge axial stress prediction. .Such a structural
analysis is presented in the next application.

Three-Dimensional Leading Edge Model

As mentioned In the theoretical formulation
section, the extension of the linear flux approach to three
dimensions Is straightforward. The approach has been
extended for both the thermal and structural analyses
using the 8-node hexahedral element. The use of the
hexahedral element is preferred over other three-
dimensional element types (such as the tetrahedral
element) to reduce the computer memory required for
the analysis (a hexahedral element consist of five
tetrahedral elements). The purpose of presenting this
application is: (1) to compare the linear flux solution with
the conventional finite element solution for a three-
dimensional problem, (2) to demonstrate the



computational time saving, and (3) to predict a more
realistic leading edgse axial stress.

The linear flux approach Is applied to predict the
‘leading edge structural response using the three-
dimensional mode! shown in Fig. 12. The mesh on the
leading edge cross-section (x-y plane) is identical to the
two-dimensional model described in the previous
example. The mesh is extended with a total of 10 layers
in the z-direction. The asrothermal loads consist of the
temperature distribution (Fig. 9) and the aerodynamic
pressure (Fig. 10) which are taken to be uniform in the 2-
direction.

The predicted axial stress contours superimposed
on the deformed leading edge along the midsection
(section 2=0.75 in.) are shown in Fig. 13. This figure
shows a more realistic axial stress distribution which
resembles the temperature distribution. The peak
compressive stress of approximately 20 ksl (compared
to 150 ksi for 2-D model) occurs at the nose of the
leading edge where the temperature is maximum. This
significant reduction occurs because there is no axial
constraint as the two-dimensional case. The
conventional finite element analysis solution is nearly
identical with a maximum difference in the deflection at
the leading edge nose of less than 0.5%. The linear flux
approach shows a computational time saving of 78%
over the conventional finite element approach in the
evaluation of the hexahedral element stiffness matrix.
Such a significant computational time saving is due to
the use of closed form algebraic expressions instead of
the 8-Gauss point numerical integration. Of course,
fewer Gauss point integration could be used at the
expense of accuracy.

Concluding Remarks

A linear flux approach for finite element thermal-
structural analysis was presented. The approach
employs the assumption that the fluxes vary linearly as
the dependent variables over the element. Such an
assumption is widely used in computational fluid
dynamics. The finite element equations for steady-state
thermal and structural analyses are derived. The finite
element equations consist of the finite element matrices
in integral form which are different from those appearing
in the conventional finite element formulation. A method
was developed to derive these finite element matrices In
closed form and the details of the derivation was
described. The use of the closed form algebraic
expressions for evaluating the finite element matrices
reduces the computational time by 39% for the 2D
problems and 78% for the 3D problems compared to
numerical Integration. The linear flux formulation also
yields slightly higher accurate results compared to the
conventional finite element formulation.

Four thermal and structural problems were
analyzed, and the results compare favorably with
available analytical and conventional finite element
results. The examples have demonstrated the viability
of the approach to improve the disciplinary analysis
efficiency for practical steady-state thermal-structural
problems.

Appendix
Closed Form Finite Element Matrices
The closed form expressions of the finite element

matrices for two-dimensional quadrilateral element,
such as the [Dx) matrix, shownin Eq. (7), are

Dx(1,1) = -Dy(3,3) = -(ya-y2)/6

Dx(2,2) = -Dx(4,4) = -(y1-ya3)/6

Dx(1,3) = -Dx(3,1) = -(ya-y2)/12
Dx(2,4) = -Dx(4,2) = -(y1-ya)/12
Dx(1.2) = -( ya + y3 - 2Yy2/12
Dx(1,4) = -(2ys - y3 - y2)/12
Dx(2,1) = ( ya + vy3 - 2y)/12
Dx(2,3) = -( ya - 2ys + w1)/12
Dx(3,2) = ( ysa - 2y2 - y1)/12
Dx(3,4) = (2ys - y2 - y)/12
Dx(4,1) = -( ya + y2 - 2y)/12
Dx(4,3) = -(2ys - y2 - w)/12

where xj and yi, i=1,...,4 are nodal coordinates of
the element based on the element node numbering
scheme shown in Fig. 1.

The element flux variation and the element nodal
variables are related through the matrices [Px] and [Py]
given in Eq. (11). The matrix, [Px], as an example, Ys
given by

(Yz'Y4)/4V1
(Ys-Y9) 14V,
(Y1'Y2)/4V1
(Yo-Ya)/4V,
(Y3'Y1)/4V2
(yy-Y2)/4V,
(Y3-Y4a)/ 4V,
(Ya-Ya)/ 4V,
(yo-Ya)/4V,
(Ya-Y4)/4V,
(Ya-Yy)/4V,
(y1-Ya)/4V,
Py(1,3)=P(2,4)=P, (3,1 y=P,(4,2)=0

K OM X X X M X X X X

nonononorowowonowononn

VOV VUV VTV TV VT VUV VU0
o~~~ P~ T~ P~ p— T~~~ o~
H DB WWWMNNN ==
DW= WNWN~BN -
- S S S i S s il i i St

»x x

where Vi, I=1,...,4 are the constants shown in Eq. (22),
and are given by,

Vi = [(Xp- %) yq + (Xq=Xg) Yo + (x4~ %) yq /4
Vo = [(Xa- %) y3 + (g = X3) Yo + (X3°Xp) y /4
Va = [(X3-X) yq + (Xp-Xg) Y + (x4 - Xq) Yo)/4
Vg = {(X3- %) yg + (x1 -Xg) Y3 + (X4 - Xq) y )4
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(a) Global coordinates (b) Natural coordinates

Fig. 1 Quadrilateral finite element in two-dimensional

global and natural coordinates.

(a) Global coordinates

(b) Natural coordinates

Fig. 2 Hexahedral finite element in three-dimensional
global and natural coordinates.
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Fig.3 Finite element model for a 10-inch radius
circular plate subjected to internal heat
generation.

100 ¢

Tempgrature,
F

501-

i
0" 5 10
r, in.

Fig. 4 Comparative temperature distribution for 10-
inch radius circular plate subjected to Internal
heat generation.
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Fig. 5 A schemaltic finite element model of heated
beam with boundary conditions.

.015
010
v (x), in.

.005
Linear flux &
_t_:c_>l_1_\_l_enl|onal

Fig. 6 Comparative dellections for a 4 in. long beam
subjected.to uniform temperature increment of

65°F.
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Fig. 7 A schematic thermal-structural finite element
model of 0.25-Inch diameter, 3-inch long
leading edge with boundary conditions.
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Surface heating rate distribution and flow Mach

number contours for an undisturbed Mach 5.25
flow over leading edge.
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Fig. 9 Sleady-siate surface temparature distributions
and leading edge temperature contours.
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Fig. 10 Surface pressure distribution and flow pressure
contours for an undisturbed Mach 5.25 flow over
leading edge.
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Fig. 11 Tangentlal stress contours on deformed leading
edge.
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Fig. 12 A schematic three-dimensional finite element
model of 0.25-inch diameter, 3-inch long,
1.5-inch wide leading edge with boundary
conditions.
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Fig. 13 Axlal stress contours on deformed leading
edge.
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